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Abstract

Non-commutative cryptography (NCC) is truly fascinating with the great hope of

advancing performance and security for high end applications. It provides a high

level of safety measure. We have modified the scheme of Kumar and Saini using

Galois Field (GF (pn)). We have proposed to use of matrices from Galois field

GF (pn). In order to improve the security of the scheme, we have used conjugacy

search problem together with symmetrical decomposition problem. The working

principal is based on the random polynomial chosen by the communicating parties

to secure key exchange, encryption and decryption. The projected approach is ex-

clusively based on the typical sparse matrices, and an analysis report in presenting

fulfilling the central cryptographic requirements.
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Chapter 1

Introduction

Cryptography is a mean of concealing or hiding true information in the form that

are incomprehensible to others. The main purpose of cryptography is to maintain

confidentiality of information. Within its history, the cryptographic schemes have

developed from simple form of conversion into complex methods that we have

today. Simple conversion includes rearranging of letters, or replacing or shifting

letters. Some notable personalities in the history who made use of these forms

of cryptography includes J.Ceaser [1] who used concealing of three letters, to

communicate with his generals, and T. Jefferson who developed a wheel cipher

that was used in the U.S. Navy during the World War II [2]. On the other hand,

complex method are the result of modern technology such as data encryption,

digital signature, authentication of senders/receivers, public key cryptography,

and secure computation among others.

In the world War I and II German’s and the Japanese made use of cryptography

in the battle field. The German’s Enigma and the Japanese Purple machine are

two of the famous machines used in the War. In 1976 Diffie and Hellman [3]

introduced public key cryptography. Later on different Public Key Cryptographic

(PKC) schemes have been suggested and various others have been broken. The

one-way trapdoor functions are central to the idea of PKC. These days most

thriving PKC schemes are based on the known difficulty of specific problems,

specially the large finite commutative rings. For instance, the difficulty of solving

1
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integer factorization problem(IFP) defined over the ring Zn, which forms a basis

of RSA cryptosystem. The detailed multi-faceted RSA cryptosysrem [4], which

can adequately oppose low exponent attacks, is also explained by the commutative

ring Zn. Other examples of cryptographic algorithm based on commutative ring

are ElGamal-like PKC schemes [5], DSS and McCurley scheme [6].

1.1 Non-Commutative Cryptography

“The cryptosystems dependent on the Integer Factorization Problem (IFP) [7, 8],

the Discrete Logarithm Problem (DLP) [7] and the Elliptic Curve Discrete Loga-

rithm Problem (ECDLP) are basically the main three sorts of down to earth open

key cryptosystems being used. The security of these cryptosystems relies intensely

on these three infeasible issues. Quantum computers are thought to be able to

solve these problems thousands of times faster than classical computers. Scien-

tists have been working on developing them for more than a decade. Quantum

PCs will break the present most well known open key cryptographic frameworks,

including RSA , DSA, and ECDSA [4]”. Therefore analyst move to utilize a non-

commutative cryptography as secure choice.

A field of cryptology where the cryptographic traditional techniques and system

based on noncommutative algebraic structures like semi groups, groups and rings

is known as Noncommutative cryptography. Traditionally, braid groups [9], were

used to develope cryptographic protocols in noncommutative algebraic structures.

Other noncommutative structures Thompson groups [10], matrix groups [11], poly-

cyclic groups [12] and Grig-orchuk groups were afterwards regarded important for

cryptographic applications. Currently mostly used PKC like RSA cryptosystem,

Diffie-Helman key exchange and Elliptic curve cryptography are based on commu-

tative algebraic structure.

To solve many cryptographic complexities like key-exchange, encryption/decryp-

tion and authentication, noncommutative cryptographic protocols have been in-

troduced.
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1.2 Current Research

In this research, we focused on “Non-commutative Cryptography Scheme

Using Extra Special Group” introduced by Kumar and Siani [13]. They

proposed it with matrices from ZN. Also, they used symmetrical decomposition

problem in their scheme. We mainly focused on the modification of noncommu-

tative cryptographic scheme using extra special group. For this purpose, we have

used matrices from GF (pn). Also we have used conjugacy search problem in our

scheme. Our scheme has become more secure as the attacker would have to solve

symmetrical decomposition problem as well as congugacy search problem, to get

access to secret key, which is computationally infeasible. Using Galois field, we

constructed examples for the illustration of our modified scheme.

1.3 Thesis Layout

The composition of rest of the thesis is as follows:

1. In Chapter 2, we will explain the fundamental ideas and definition of cryp-

tography. Then we discussed mathematical background, Galois Field and

arithmetic in Galois field. Later on, we have discussed Fermat’s theorem,

hash functions and their properties.

2. In Chapter 3, we have presented the review of “Non-commutative Cryptog-

raphy Scheme Using Extra Special Groups” by Saini and Kumar [13]. Also

we have presented a cryptanalysis of the scheme. Furthermore, we have de-

scribed the concepts on noncommutative cryptography scheme with the help

of examples.

3. In Chapter 4, we have discussed the modified form of the key exchange

on“ Non-commutative Cryptography Scheme Using Extra Special Groups”.

In the modified scheme, we have used Heisenberg group of matrices over

Galois Field. Also, we have used conjugacy search problem, together with
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symmetrical decomposition problem, to improve security of the algorithm.

The modified scheme is illustrated with examples and the last section is

devoted to the security analysis.



Chapter 2

Preliminaries

In this chapter we will describe the fundamental ideas, mathematical background

and definitions related to the thesis.

2.1 Cryptography

Cryptography is the art and science for transforming the secret messages into

an unreadable format, called ciphertext. Only those who have a secret key can

decipher the ciphertext into original message. Cryptography can also be used for

user authentication. This is traditionally based on mathematical foundation. In

cryptography we develop a secure cryptosystem. A system in which we convert

data or message into secret codes using encryption algorithm and convert secret

codes back into messsage using decryption algorithm is know as cryptosystem.

There are five basic components in cryptosystem:

i Plaintext space M

ii Ciphertext space C

iii Encryption algorithm E

iv Decryption algorithm D

5
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v Key K

Cryptography have the following types

• Symmetric Key Cryptography(secret key cryptography)

• Public Key Cryptography

2.1.1 Symmetric Key Cryptography

“A system in which related keys is used for both Encryption and Decryption is

called symmetric key cryptography [14]. For example, Data Encryption Standard

(DES)[15], Double Data Encryption Standard [16], Triple Data Encryption (3DES)

[16] and Advance Encryption Standard (AES) [17]. A model of symmetric key

cryptography is shown in the FIGURE 2.1”

FIGURE 2.1: Symmetric Key

The main disadvantage of symmetric key cryptography is key sharing which means

that the secret key is to be transmitted to each party involved in the communica-

tion. Electronic communication used for this purpose may not be a secure way of

exchanging keys because anyone can access to the communication channels. The
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only protected ways of switching keys will be to exchange them privately but it

could be a very difficult task.

2.1.2 Public Key Cryptography

“Public key cryptosystem is proposed by Diffie-Hellman in 1976 [3]. In public key

cryptography [16], two keys are used for encryption and decryption, one is called

public key which is known to everybody and the other is called secret key which is

kept secret by user”. The public key cryptography is shown in the FIGURE 2.2.

Here sender encrypt original text using public key and encryption algorithm to

obtain the cipher-text. The secret key and decryption algorithm are used by the

receiver end to obtain orignal text.

FIGURE 2.2: Asymmetric Key

RSA cryptosystem [4] and ElGamal cryptosystem [5] are examples of asymmetric

key cryptography. Diffie and Hellman version of the cryptosystem based on trap-

door function (which is easy to calculate in one direction but hard to calculate in

other direction). Diffie-Hellman protocol relies on some hard problems which will

be discussed after the mathematical background.
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2.2 Mathematical Background

In this section, we recall some tools in mathematics that are used in the thesis.

Definition 2.2.1. (Group)

“Let G be a non empty set and ∗ be a binary operation on G. Then (G, ∗) is

called a group [18] if it satisfies the following properties:

i. Closure: For all a, b ∈ G, a ∗ b ∈ G,

ii. Associative: For all a, b, c ∈ G (a ∗ b) ∗ c = a ∗ (b ∗ c),

iii. Identity: There is element e ∈ G such that a ∗ e = e ∗ a = a,

iv. Inverse: If p ∈ G, then there is an element p1 ∈ G such that

p ∗ p1 = p1 ∗ p = e”

Example 2.2.1. The following are examples of group

i. Set of integers Z is a group with respect to addition of integers.

ii. Set of all invertible matrices with ordinary matrix multiplication form a

group.

iii. Set of real numbers (only non zero elements) R form a group under multi-

plication.

Definition 2.2.2. (Abelain Group)

“A group G is called abelian group [18], if binary operation “*” is commutative

that is

a ∗ b = b ∗ a ∀ a, b ∈ G”.

Definition 2.2.3. (Ring)

“A non-empty set together with two binary operations, one is addition (+) and

other is multiplication (·), denoted by (R,+,·) is said to be a ring [19] if it satisfies

the following properties:
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i. (R,+) is an abelian group.

ii. (R,·) is a monoid.

iii. Distributive property of multiplication over addition holds.

That is ∀ p,m, n ∈ R

p.(m+ n) = p.m+ p.n and

(p+m).n = p.n+m.n”

Example 2.2.2. “Followings are the examples of ring

i. Z , Q , R and C all form ring under usual addition and multiplication.

ii. Mn(R) set of all n×n matrices over the ring R is also a ring under addition

and multiplication .

iii. If p is a prime than the set Zp of integer mod p is a ring.

iv. Set of odd integer is not a ring because it does not satisfied closure property

under multiplication.”

Definition 2.2.4. (Commutative Ring )

“A ring is known as commutative ring [20], if commutative property of multipli-

cation holds, that is u× v = v × u”

Example 2.2.3. The non-commutative ring Mn(R) is the set of all n × n ma-

trices over a ring R is not commutative ring because matrix multiplication is not

commutative.

Definition 2.2.5. (Semiring)

“A set S [21], together with two binary operation “+” and “·” is called the semiring

if it satisfies the following conditions:

i. S is semi group under “+”

ii. S is semi group under “·”
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iii. Multiplication is distributive over addition in either side. That is, for all

u, v, w ∈ S we have

u · (v + w) = (u · v) + (u · w)

(u+ v) ·w= (u·w)+(v·w)

Example 2.2.4. Following are the examples of semiring.

i Every ring is a semiring therefore set of integers Z, rational number Q, real

number R and complex number C all are semirings.

ii Set of whole number W is a semiring.

iii Set of all non-negative integers, non-negative rational numbers and non-

negative real numbers are examples of semiring.

iv The set of polynomial with natural numbers as coefficients, denoted by N[X],

forms a semi-ring. In fact,this is the commutative semiring on a single gen-

erator X.”

Definition 2.2.6. (Commutative Semiring)

“A semiring S is known as commutative semiring [22] if commutative property of

multiplication holds i.e.,

u · v = v · u ∀ u, v ∈ S.”

Definition 2.2.7. (Field)

“A nonempty set F with two binary operation addition (+) and (·) is called a field

[21], if it satisfies the following properties:

i. (F,+) is an abelian group.

ii. (F,·) is an abelian group.

iii. Distributivity of addition over multiplication. ”

Example 2.2.5. Examples of field are
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i. Set of real and complex numbers are fields under usual addition and multi-

plication.

ii. Set of integers Z is not a field as there are no multiplicative inverses in Z”.

Definition 2.2.8. (Finite Field)

Finite field is a field that contains finite numbers of elements.

Example 2.2.6. Following are the examples of finite field

i. Z under mod p where p is prime is a field.

ii. Galois fields are finite field. For example GF (2), GF (23) and GF (3).

-Galois Field “A finite field whose order is the form of pn, where n is any integer

and p is prime number is called Galois Field denoted by GF (pn) [23]. In Galois

field, elements are defined as

GF (pn) = (0, 1, 2, ...., p−1)∪(p, p+1, p+2, ..., p+p−1)∪(p2, p2+1, p2+2, ..., p2+

p− 1) ∪ .... ∪ (pn−1, pn−1 + 1, pn−1 + 2, ..., pn−1 + p− 1).

The order of Galois field is given by pn while p is characteristics of field and the de-

gree of the polynomials in GF (pn) is less than n, while coefficients is at most p−1.”

Example 2.2.7. GF (32)=(0, 1, 2, x, x+ 1, x+ 2, 2x, 2x+ 1, 2x+ 2) consist 32 = 9

elements where each of the polynomials have degree less than 2 and coefficients

are less than 3.

Example 2.2.8. Finite field F2 i.e., {0,1} with addition and multiplication is

defined in TABLE 2.1 and TABLE 2.2 below.
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+ 0 1
0 0 1
1 0 0

TABLE 2.1: Addition

. 0 1
0 0 0
1 0 1

TABLE 2.2: Multiplication

2.3 Computation in Galois Field

In this section, we will explain algebraic operation in Galois field. In Galois field

algebraic expression needs some additional steps. Disparate functioning in the

Euclidean space, algebraic operations (+,-,×) in Galois Field need some additional

steps.

2.3.1 Addition and Subtraction in Galois Field

In Galois field, the operation of addition is quite simple. If f1(x), g1(x) are any

two polynomials in GF (pn) and h1(x) = f1(x) + g1(x) with the coefficients of

f1(x), g1(x) and h1(x) are A = an−1, an−2, ...., a1a0, B = bn−1, bn−2, ...b1, b0, and

C = cn−1, cn−2, ...c1, c0 respectively. Let ak, bk and ck are the coefficients of f1(x),

g1(x) and h1(x) respectively then

ck = ak + bk mod p for k = 0, 1, 2, 3, ....n− 1

Likewise if h1(x) = f1(x)−g1(x) then ck = ak−bk mod p where k ∈ {0, 1, 2, 3......n−

1}.

Note that in Galois field GF (2n) addition can be performed using XOR operation.

The element of Galois field can be represent by a unique n-bit pattern. We can

transform polynomials of Galois field in binary number system from which we can
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convert it into any number system.

Example 2.3.1. Conversion of polynomials into different number systems

Let x7 + x5 + x4 + x+ 1 is the polynomial in GF (28).

The binary representation

x7 + x5 + x4 + x+ 1 = (10110011)2

In hexadecimal representation

x7 + x5 + x4 + x+ 1 = (B3)16

In decimal representation

x7 + x5 + x4 + x+ 1 = (10110011)2 = 179

Example 2.3.2. Suppose we are working in GF (24), then we have compute f(x)+

g(x) if f(x) = x3 + x2 + x+ 1, g(x) = x2 + 1 under the mod m(x) where m(x) =

x4 + x3 + x+ 1 then

f(x) + g(x) = (x3 + x2 + x+ 1) + (x2 + 1)

f(x) + g(x) = (x3 + x) mod (x4 + x3 + x+ 1)

Alternatively, from binary number system

f(x) = x3 + x2 + x+ 1 = (1111)2 and g(x) = x2 + 1 = (0101)2

f(x) + g(x) = 1111⊕ 0101

= 1010

= x3 + x
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2.3.2 Multiplication and Multiplicative Inverse

In Galois Field, multiplication involves more hard work. Suppose f1(x), g1(x)

be any two polynomials in GF (pn) and suppose m1(x) be irreducible polynomial.

The degree of product of f1(x) and g1(x) should be less than n in GF (pn). If h1(x)

represent the product of f1(x), g1(x) then

h1(x) = f1(x) · g1(x) mod p

Suppose a1(x) represent the multiplicative inverse of f1(x) then

f1(x) · a1(x) = 1 mod p

Note that in evaluating the multiplication of any two polynomials and their in-

verses need both reducing polynomial m1(x) and coefficients in modulo p. The

most feasible method to calculate the multiplicative inverse of polynomials is Ex-

tended Euclidean Algorithm.

Example 2.3.3. Let f1(x) = x2 + 1 and g1(x) = x2 + x + 1 with irreducible

polynomial m1(x) = x3 + x2 + 1 in GF (23) evaluate f(x).g(x)

f1(x).g1(x) = (x2 + 1)(x2 + x+ 1)

= (x2 + 1)(x2 + x+ 1)

= x4 + x3 + x2 + x2 + x+ 1

= x4 + x3 + x+ 1

= 1 mod (x3 + x+ 1)
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2.3.3 Fermat’s Little Theorem

“If p is any prime and a is any integer such that p does not divide a, then

ap−1 ≡ 1 mod (p) [24].”

Example 2.3.4. Following are applications of Fermat’s little theorem

(i): a37≡ a (mod 5), (ii): a37 ≡ a (mod 7) and (iii): a37 ≡ a (mod 3)

Solution: (i)

Since Fermat’s little theorem ap−1 ≡ 1 mod (p) therefore

a5−1 ≡ 1 mod (5)

a4 ≡ 1 mod (5)

a37 ≡ (a4)9 · a ≡ 19 · a ≡ a (mod 5)

(ii)

a7−1 ≡ 1 mod (7)

a37 ≡ (a6)6 · a ≡ 16 · a ≡ a mod (7)

(iii)

a3−1 ≡ 1 mod (3)

a37 ≡ (a2)18 · a ≡ 118 · a ≡ a mod (3)
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2.4 Polynomial

In this section we will explain the different types of polynomials, arithmetic of

the polynomials and multiplicative inverses of the polynomials. There are three

different types of polynomials such as:

i. Usual polynomials,

ii. Polynomials based on modulo prime,

iii. Polynomials based on modulo prime defined on other polynomials which

have some power n, where n is an integer.

2.4.1 Usual Polynomial

An expression of the form

f(y) = bmy
m + bm−1y

m−1 + .....+ b1y + b0

for bm 6= 0 is called usual polynomial with ∀ bi ∈ R and mi are non negative

integers.

2.4.2 Polynomial Based on Modulo Prime

An expression of the form:

f(x) = f0 + f1x+ f2x
2+, · · ··, fmxm

where the coefficient are taken from a finite field F is called polynomial over F.

With polynomial over F, the coefficients should be reduced under modulo prime

p.
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2.4.3 Polynomials Based on Modulo Prime Defined on Other

Polynomials (which have some power n)

A polynomial with coefficients reduced by modulo prime p and degree of the

polynomial is decreased by modulo an irreducible polynomial of degree n, where

n is an integer.

2.5 Polynomial Arithmetic

In this section we will explain the ordinary polynomial arithmetic, polynomial

arithmetic with coefficient mod n and modular polynomial arithmetic.

2.5.1 Ordinary Polynomial Arithmetic

“In ordinary polynomial arithmetic we add or subtract corresponding coefficients

of polynomial then multiply all term by each other” e.g, let f(y) = y4 + y2 + 1

and g(y) = y3 − y + 2

f(y) + g(y) = y4 + y2 + 1 + y3 − y + 2

= y4 + y3 + y2 − y + 3,

f(y)− g(y) = y4 + y2 + 1− y3 + y + 2

= y4 − y3 + y2 − 1

and

f(y) · g(y) = (y4 + y2 + 1)(y3 − y + 2)

= y7 + 2y5 − 2y4 + 2y3 − 2y2 + y − 2
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2.5.2 Polynomial Arithmetic with Coefficient Mod n

i. Reduce each coefficient modulo any integer.

ii. Polynomials form a ring if coefficient are in GF (p)

Example 2.5.1. Following are examples of addition and multiplication of poly-

nomials mod p.

Let modulo prime p = 2 i.e., all coefficient are in GF (2).

Suppose f(y) = y3 + y2 + y + 1 and g(y) = y3 + y

f(y) + g(y) = y3 + y2 + y + 1 + y3 + y

= 2y3 + y2 + 2y + 1

= y2 + 1

f(y)× g(y) = (y3 + y2 + y + 1)(y3 + y)

= y6 + y5 + 2y4 + y3 + y2 + y

= y6 + y5 + y3 + y2 + y

2.5.3 Modular Polynomial Arithmetic

“The polynomial [25] r(x) is called the remainder of f(x) modulo g(x). For poly-

nomials a(x), b(x) and g(x) which are over the same field, we say a(x) is congruent

to b(x) modulo g(x) written a(x) ≡ b(x) mod g(x), if m(x) divides a(x)− b(x).

Example 2.5.2. arithmetic in GF (32) mod (a′2 + 1 ):
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+ 0 1 2 a′ a′ + 1 a′ + 2 2a′ 2a′ + 1 2a′ + 2

0 0 1 0 0 0 0 0 0 0

1 0 1 2 a′ a′ + 1 a′ + 2 2a′ 2a′ + 1 2a′ + 2

2 0 2 1 2a′ 2a′ + 2 2a′ + 1 a′ a′ + 2 a′ + 1

a′ 0 a′ 2a′ 2 a′ + 2 2a′ + 2 1 a′ + 1 2a′ + 1

a′ + 1 0 a′ + 1 2a′ + 2 a′ + 2 2a′ 1 2a′ + 1 2 a′

a′ + 2 0 a′ + 2 2a′ + 1 2a′ + 2 1 a′ a′ + 2 2a′ 2

2a′ 0 2a′ a′ 1 2a′ + 1 a′ + 1 2 2a′ + 2 a′ + 2

2a′ + 1 0 2a′ + 1 a′ + 2 a′ + 1 2 2a′ 2a′ + 2 a′ 1

2a′ + 2 0 2a′ + 2 a′ + 1 2a′ + 1 a′ 2 a′ + 2 1 2a′

TABLE 2.3: Addition in GF (32)

· 0 1 2 a′ a′ + 1 a′ + 2 2a′ 2a′ + 1 2a′ + 2

0 0 1 2 a′ a′ + 1 a′ + 2 2a′ 2a′ + 1 2a′ + 2

1 1 2 0 a′ + 1 a′ + 2 a′ 2a′ + 1 2a′ + 2 2a′

2 2 0 1 a′ + 2 a′ a′ + 1 2a′ + 2 2a′ 2a′ + 1

a′ a′ a′ + 1 a′ + 2 2a′ 2a′ + 1 2a′ + 2 0 1 2

a′ + 1 a′ + 1 a′ + 2 a′ 2a′ + 1 2a′ + 2 2a′ 1 2 0

a′ + 2 a′ + 2 a′ + 3 a′ + 1 2a′ + 2 2a′ 2a′ + 1 2 0 a′ + 1

2a′ 2a′ 2a′ + 1 2a′ + 2 0 1 2 a′ a′ + 1 a′ + 2

2a′ + 1 2a′ + 1 2a′ + 2 2a′ 1 2 0 a′ + 1 a′ + 2 a′

2a′ + 2 2a′ + 2 2a′ 2a′ + 1 2 0 1 a′ + 2 a′ a′ + 1

TABLE 2.4: Multiplication in GF (32)

The above tables are the examples of addition and multiplication in Galois field

GF (32) ”
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2.6 Modular Multiplicative Inverse

In this section we will explain how to find multiplicative inverses modulo some

integer n.

Definition 2.6.1. Given any two integer r and s, the problem is to find an integer

t such r.t ≡ 1 mod s and r−1≡ t mod s, where 1 ≤ t ≤ s− 1.

The multiplicative inverse of r mod s are relatively prime that is, gcd(r,m) = 1.

Algorithm 2.5.1 (Multiplicative inverse in finite field)

To find the multiplicative inverse in Zp, we can implement Euclidean Algorithm

[26] in the computer algebra system ApCoCoA [27].

Following is the method of finding the inverse of r mod s.

Input: An integer r and an irreducible integer s.

Output: r−1 mod s

i. Initialize six integers Ui and Vi for i=1,2,3 as

(V1, V2, V3) = (1, 0,m)

(W1,W2,W3) = (0, 1, r)

ii. If W3=0, return V3=gcd(r, s); no inverse of r exist in mod s

iii. If W3=1 then return W3 = gcd (r, s) and W2 = r−1 mod s

iv. Now divide V3 by W3 and find the quotient Q when V3 is divided by W3

v. Set (P1, P2, P3) = ((V1 −QW1), (V2 −QW2), (V3 −QW3))

vi. Set (V1, V2, V3) = (W1,W2,W3)

vii. Set (W1,W2,W3) = (P1, P2, P3)

viii. Go to step (ii)

Definition 2.6.2. (Monic Polynomial):

“A monic polynomial [28], is a mathematical expression that consists of coeffi-

cients and a single variable, with the leading coefficient equal to one. The leading
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coefficient is found in the term that contains the variable with the highest degree

or exponent.”

Definition 2.6.3. (Unique Factorization):

“Every monic polynomial f(x) is either irreducible or can be factorized into a

product of monic polynomial factors. Further if a factor is not irreducible, it can

be factored further. Since factor degrees are decreasing but bounded below by 1,

we must eventually arrive at a product of monic irreducible(prime) polynomials

[28]”.

Example 2.6.1. “Following are examples of the irreducible polynomials

i. x2−2 is irreducible polynomial over Q. It has no simpler factors with rational

coefficients.

ii. x2 + 1 is irreducible over R. It has no factors with real coefficient.”

Definition 2.6.4. (Discrete Logarithm Problem)

Given x, y ∈ Zp such that

xn = y mod p

then finding n is known as discrete logarithm problem [7].

Definition 2.6.5. (Integer Factorization Problem)

Let n be a given number, the problem of decomposition of n to the product of

prime pα and qα such that n = pαqα is called integer factorization problem [7, 8].

Definition 2.6.6. (Symmetrical Decomposition Problem)

“Given a, b ∈ G and m,n ∈ Z, find x ∈ G such that

b = xm.a.xn

then finding x is known as symmetrical decomposition problem [29]”.

Definition 2.6.7. (Conjugacy Search Problem)

“Let G be a group and x, y ∈ G, whether or not they represent conjugate element

of G. That is, the problem is to determine whether there exist an element z of G

such that y = zxz−1 is known as Conjugacy Search Problem[30]”.
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2.6.1 Hash Function

“A Hash function is any function, that maps data of random size into a fixed

length hash value as shown in the figure 2.3. The hash value is representative of

the orignal string of charecter, but is smaller than the orignal [31, 32]. Secure Hash

Algorithm (SHA) is commonly used hash function. National institute of standard

and technology (NIST) devalpoed SHA in 1993.

FIGURE 2.3: Hash function

Some known cryptographic hash function are (SHA-1 [33] , which produces a hash

value of 160 bits), SHA-256, SHA-512 [34] and MD-6 [35].

There are saveral tools to calculate cryptographic hash function like hash tool 1.2,

Crypto-precision and DNS [36].

Followigs are the properties of Hash function

i. Performance: It is easy to calculate H(P ) where P is plaintext.

ii. One way Function: If H(P ) is given it is difficult to find P .
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iii. Weak Collision Resistance: If P and H(P ) are given it is very hard to

find P ′ such that H(P ) = H(P ′)

iv. Strong Collision Resistance: It is hard to find P , P ′ such that H(P ) =

H(P ′).”



Chapter 3

Noncommutative Cryptography

Based on Groups

In this chapter we will review the research paper “Noncommutaitve Cryptographic

Scheme Using Extra Special Group” presented by Saini and Kumar. In this pa-

per Diffie-Helman like key exchange protocol is used. Also ElGamal like encryp-

tion/decryption algorithm is used. In the last section we will explain that the

encryption/decryption scheme is vulnerable against known plaintext attack.

3.1 Extra Speacial Group

In this section we are going to define some basic definition related to extra special

group

Definition 3.1.1. (Cyclic Group)

“A group G is called cyclic [37] if it is generated by single element. For example

{1, ω, ω2} is a cyclic group with ω3 = 1.”

Definition 3.1.2. (Center of Group):

“If G is group then center of G [38] is denoted by Z(G) and define as

Z(G)={for x ∈ G such that xg = gx ∀ g ∈ G}”

24
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Definition 3.1.3. (P-Group)

“A finite group, whose order is power of some prime p is called P-Group [39]. For

example D4 is P-Group of order 23.”

Definition 3.1.4. (Heisenberg Group)

It is a group of square, upper triangular matrices [40] of order 3 by 3. It is a group

under multiplication, also it is a nonabelian group. For instance


1 p q

0 1 r

0 0 1


where element of p, q, r belongs to any commutative ring. In Heisenberg matrices(three-

dimension case) the multiplication is given as:


1 a b

0 1 c

0 0 1




1 d e

0 1 f

0 0 1



=


1 a+ d e+ af + b

0 1 f + c

0 0 1

.

Inverse can be computed by the given general form


1 p q

0 1 r

0 0 1


−1

=


1 −p pr − q

0 1 −r

0 0 1


Definition 3.1.5. (Extra Speacial Group)

A P-Group G, whose center Z(G) is cyclic and is of order prime P , then it is

called Extra Special Group. The order of Extra Special Group is always p1+2n

where n is some positive integer and it is denoted by p1+2n.
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3.1.1 Why Heisenberg Groups

The use of Heisenberg group in cryptography provides us an advantages not only

in the computational cost but also resistance against cryptographic attacks. Note

that, the poly-cyclic behavior G1 . G2 . G3 . ..... . Gn+1 =1 of Heisenberg group

makes the cost-effective implementation on software and hardware.

3.2 Noncommutative Cryptography

“Noncommutative cryptography on groups and rings [13], is the mathematical

rationalization over matrix group or ring is exemplified on M(ZN), based on N =

p.q, where p and q are two secure primes. This is intractable, in view of the

fact that A =

a 0

0 0

 ∈ M(ZN), a ∈ ZN, from a2=

a2 0

0 0

 ∈ M(ZN) with no

significant factors of N .

The above mentioned ring can be enhanced with respect to security by using

special or sparse matrices.”

3.3 Key Exchange Protocol on Noncommutative

Cryprography

The “noncommutative key exchange cryptography [13] works similar to Diffie-

Hellman key exchange [3] like a commutative case”, but the main difference is the

listed actions on selecting of public parameters, formation of secret key, generation

rules for common secret keys, and encryption-decryption. The efficaciousness of

the protocol is dependent upon the impossibility of calculating the DLP [7]. The

security of the protocol lies in the prime factorization [7] on two enormous primes.

Random secret polynomial selected first by seder Y and then by receiver Z. A

thorough explanation by the numerical example is elaborated in this section.
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“Key Exchange protocol over Noncommutaitve Ring

Public Parameters

r, s ∈ Z+

α, β: ring elements

Key Generation by user Y

i. User Y picks an arbitrary polynomial : f1(x).

ii. if f1(α) 6= 0, then f1(α) is considered to be secret key.

iii. Public key generation XY = f1(α)r.β.f1(α)s.

Key generation by user Z

i. User Z picks an arbitrary polynomial : g1(x).

ii. if g1(α) 6= 0, then g1(α) is considered to be secret key.

iii. Public key generation XZ = g1(α)r.β.g1(α)s.”

Common session key generation by user Y

KY = f1(α)r.XZ .f1(α)s.

Common session key generation by user Z

KZ = g1(α)r.XY .g1(α)s.

This protocol can be explained by the following example

Example 3.3.1. Public parameters are

r = 3, s = 5,
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α =

17 5

7 4

 , β =

1 9

3 2


N = p.q = 77

User Y chooses an arbitrary polynomial f1(x) = 3x3 + 4x2 + 5x+ 6 and computes

the polynomial on f1(α), and if f1(α) 6=0 then computed value will be secret key

for user Y. Then user Y’s secret key is given as:

f1(α) = 3

17 5

7 4

3

+ 4

17 5

7 4

2

+ 5

17 5

7 4

 + 6I

=

19 20

28 44

 mod 77

Now, the public key generation XY by user Y is given as:

XY = f1(α)r.β.f(α)s

=

19 20

28 44

3

.

1 9

3 2

 .

19 20

28 44

5

=

3 56

9 2

 mod 77

At the other end user Z picks an arbitrary polynomial g1(x) = x5 + 5x + 1.

Computes the polynomial g1(α) and if g1(α) 6= 0 then the computed value will be

secret key for user Z.

g1(α) =

17 5

7 4

5

+ 5

17 5

7 4

2

+ 5

17 5

7 4

 + 1.I

=

70 52

42 58

 mod 77
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and the Public key generation XZ by user Z is given as:

XZ = g1(α)r.β.g1(α)s

=

70 52

42 58

3

.

1 9

3 2

 .

70 52

42 58

5

=

 0 39

35 68

 mod 77

Lastly, common session key computed by the user Y as KY :

KY = f1(α)r.XZ .f1(α)s

=

19 20

28 44

3

.

 0 39

35 68

 .

19 20

28 44

5

=

21 37

49 69

 mod 77

and the common session key computed by user Z as KZ :

KZ = g1(α)r.XY .g1(α)s

=

70 52

42 48

3

.

3 56

9 2

 .

70 52

42 48

5

=

21 37

49 69

 mod 77
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3.3.1 Key Exchange Protocol over Heisenberg Group

The protocol that are used in Section 3.3 is applicable on Heisenberg group. It is

demonstrated on the public parameters, with following supposition

r, s ∈ Z+

r = 3, s = 5

α, β: Heisenberg Group element over M(ZN)

α=


1 5 7

0 1 4

0 0 1

 , β=


1 6 9

0 1 3

0 0 1


N = p.q = 77

N = p · q where p and q are two secure prime numbers

User Y picks an arbitrary polynomial f1(x) = 3x3 + 4x2 + 5x + 6. Compute the

polynomial f1(α), and if f1(α) 6= 0 then computed value will be secret key for user

Y. Then Y’s secret key is given as:

f1(α)=3


1 5 7

0 1 4

0 0 1


3

+4


1 5 7

0 1 4

0 0 1


2

+5


1 5 7

0 1 4

0 0 1

+6I

=


18 33 69

0 18 11

0 0 18

 mod 77

Now, the public key generation XY by user Y is given as:

XY = f1(α)r.β.f1(α)s
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=


18 33 29

0 18 11

0 0 1


3

.


1 6 9

0 1 3

0 0 1

.


18 33 29

0 18 11

0 0 18


5

=


18 33 29

0 18 11

0 0 18

 mod 77

At the other end user Z picks an aribtrary polynomial g1(x) = x5 + 5x + 1. He

computes the polynomial g1(α), and if g1(α) 6= 0 then computed value value will

be secret key for user Z:

g1(α) = 5


1 5 7

0 1 4

0 0 1

+


1 5 7

0 1 4

0 0 1


5

+1

=


7 50 39

0 7 40

0 0 7

 mod 77

and the public key generation XZ is given as:

XB = g1(α)r.β.g1(α)s

=


7 50 39

0 7 40

0 0 7


3

.


1 6 9

0 1 3

0 0 1

.


7 50 39

0 7 40

0 0 7


5

=


42 56 35

0 42 0

0 0 42

 mod 77
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Lastly, the common session key computed by user Y as KY is given as:

KY = f1(α)r.XZ .f1(α)s

=


18 33 29

0 18 11

0 0 1


3

.


42 56 35

0 42 0

0 0 42

.


18 33 29

0 18 11

0 0 18


5

=


70 42 28

0 70 0

0 0 70

 mod 77.

The common session key computed by user Z as KZ is given as:

KZ = g1(α)r.XY .g1(α)s

=


7 50 39

0 7 40

0 0 7


3

.


9 32 10

0 9 71

0 0 9

.


7 50 39

0 7 40

0 0 7


5

=


70 42 28

0 70 0

0 0 70

 mod 77

3.4 Cryptosystem Based on Heisenberg Group

First of all, we are going to define M as plain-text space and H as hash function

[41]. For simplicity, we suppose that M = M3(ZN), while hash function is defined

as

H : M3(ZN) 7→ P = M3(ZN),mij 7→ 2mij mod N
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3.4.1 Encryption-Decryption Algorithm

“Encryption-Decryption Algorithm on Heisenberg group [13] is as follows

Public Parameters

r, s ∈ Z+

α, β are the elements of Heisenberg Group

M : Plaintext

H(P ): Hashed text

Key Generation by user Y

i. User Y picks an arbitrary polynomial : f1(x).

ii. If f1(α) 6= 0, then f1(α) is considered to be secret key.

iii. Public key generation XY = f1(α)r.β.f1(α)s.

Key generation by user Z

i. User Z picks an arbitrary polynomial : g1(x).

ii. If g1(α) 6= 0, then g1(α) is considered to be secret key.

iii. Public key generation XZ = g1(α)r.β.g1(α)s.”

Common session key generation by user Y

KY = f1(α)r.XZ .f1(α)s.

Common session key generation by user Z

KZ = g1(α)r.XY .g1(α)s.

Encryption by user Z
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C: cipher-text

D: decyption key

C = g1(α)r.β.g1(α)s , D = H(g1(α)r.XY .g1(α)s)⊕ P

Decryption by user Y

P = H(f1(α)r.XZ .f1(α)s)⊕D

Example 3.4.1. The public parameters

r, s ∈ Z+ such that

r = 3, s = 5

α, β are the elements of Heisenberg Group over M(ZN)

α =


1 5 9

0 1 9

0 0 1

 , β=


1 9 5

0 1 3

0 0 1


N = p.q = 77 where p and q are prime numbers

M=


27 19 25

34 8 7

45 5 9


User Y picks an arbitrary polynomial f1(x) = 3x3 + 4x2 + 5x + 6. Compute the

polynomial f1(α), and if f1(α) 6= 0 then computed value will be secret key for user

Y. Hence Y’s secret key is given as:

f1(α)=3


1 5 9

0 1 9

0 0 1


3

+4


1 5 9

0 1 9

0 0 1


2

+5


1 5 9

0 1 9

0 0 1

+6I
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=


18 33 13

0 18 44

0 0 18

 mod 77.

The public key generation XY by user Y is given as:

XY = f1(α)r.β.f1(α)s

=


18 33 13

0 18 44

0 0 18


3

.


1 9 5

0 1 3

0 0 1

.


18 33 13

0 18 44

0 0 18


5

=


9 59 42

0 9 49

0 0 9

 mod 77

Moving onwards, user Z picks an arbitarary polynomial g1(x) = x5 + 5x + 1.

Computes the polynomial g1(α), and if g1(α) 6= 0 then computed value will be

secret key for user B:

g1(α) = 5


1 5 9

0 1 9

0 0 1

+


1 5 9

0 1 9

0 0 1


5

+1I

=


7 50 1

0 7 13

0 0 7

 mod 77

and the public key generation XZ by user Z is given as:

XZ = g1(α)r · β · g1(α)s
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=


7 50 1

0 7 13

0 0 7


3

.


1 9 5

0 1 3

0 0 1

.


7 50 1

0 7 13

0 0 7


5

=


42 28 35

0 42 35

0 0 42

 mod 77

The public key of user Z is considered as ciphertext (in our case user Z is sender

and user Y is receiver):

C = g1(α)r.β.g1(α)s =


42 28 35

0 42 35

0 0 42

,

D = H(g1(α)r.XY .g1(α)s) ⊕ M

= H




7 50 1

0 7 13

0 0 7


3

.


9 59 42

0 9 49

0 0 9

 .


9 59 42

0 9 49

0 0 9


5⊕


27 19 25

34 8 7

45 5 9



= H




70 21 25

0 70 7

0 0 70


 ⊕


27 19 25

34 8 7

45 5 9



=


270 221 225

20 270 27

20 20 270

 ⊕


27 19 25

34 8 7

45 5 9



D =


12 42 57

35 31 52

44 4 30

 mod 77
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Plaintext is given as follows:

M = H(f1(α)r.C.f1(α)s) ⊕ D

= H




18 33 13

0 18 44

0 0 18


3

.


42 28 35

0 42 35

0 0 42

 .


18 33 13

0 18 44

0 0 18


5 ⊕


12 42 57

35 31 52

44 4 30



= H




70 21 25

0 70 7

0 0 70


⊕


12 42 57

35 31 52

44 4 30



=


270 221 225

20 270 27

20 20 270

 ⊕


12 42 57

35 31 52

44 4 30



M =


27 19 25

34 8 7

45 5 9

 mod 77

Hence we get plaintext M.

3.5 Cryptanalysis

In this section we have shown that the encryption/decryption scheme of Saini and

Kumar [13], is vulnerable to known plaintext attack.

Recall that in a known plaintext attack we assume that an attacker has the knowl-

edge of plaintext and ciphertext pairs like (m1, c1), (m2, c2), ..., (mn, cn). Note that

the ciphertext D for the plaintext M is

D = H(g1(α)r.XY .g1(α)s)⊕M (3.1)
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and the decryption is done as

M = H(f1(α)r.XZ .f1(α)s)⊕D (3.2)

with the property that

H(g1(α)r.XY .g1(α)s) = H(f1(α)r.XZ .f1(α)s)

If an attacker has the knowledge of both M and D then from equation (3.1)

H(g1(α)r.XY .g1(α)s) = D ⊕M (3.3)

Therefore the scheme will not be secure for any subsequent encryption. We will

illustrate the attack by applying it on the example given in [13].

Example 3.5.1. Consider the message M , ciphertext D of Example 3.4.1

M =


27 19 25

34 8 7

45 5 9

, D =


12 42 57

35 31 52

44 4 30

 and mod=77

Since

M = H(f1(α)r.XZ .f1(α)s)⊕D

therefore

H(f1(α)r.XZ .f1(α)s) = M ⊕D

H(f1(α)r.XZ .f1(α)s) =


27 19 25

34 8 7

45 5 9

⊕


12 42 57

35 31 52

44 4 30


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H


a11 a12 a13

a21 a22 a23

a31 a32 a33

 =


27⊕ 12 19⊕ 42 25⊕ 57

34⊕ 35 8⊕ 31 7⊕ 52

45⊕ 44 5⊕ 4 9⊕ 30



=


23 57 32

1 23 51

1 1 23

 mod 77

Therefore the encryption/decryption scheme of Saini and Kumar is vulnerable to

known plaintext attack. We have found a hash value of share secret key, which is

used for both encryption-decryption.



Chapter 4

Noncommutative Key Exchange

using Heisenberg Group Over

Galois Field

In this chapter, we will represent and discuss a modified form of the key exchange

on noncommutative cryptographic scheme proposed by Saini and Kumar[13]. For

this purpose we aim to use extra special group of matrices over a Galois field

(GF (pn)). The key exchange is part of the proposed noncommutative cryptosys-

tem is like Diffie-Hellman [3] key exchange in the abelian case, but the main

difference is the listed operations on choosing the public parameters, generating of

secret keys, generation rules for common secret keys and encryption-decryption.

Security of the scheme relies on the impossibility of calculating the symmetrical

decomposition and conjugacy search problem [7]. Particularly, an attacker has to

factorize public polynomial which is the product of the arbitrary secret irreducible

polynomial over Zp. In fact, the attacker has to solve exponential equations, that

is X = f1(α)r · β · (f(α)−1)s and it is hard to find f1(α) from the knowledge of

public parameters. Illustrative examples is given to explain the working of the

proposed scheme.

40
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4.1 The Proposed Key Exchange Protocol

In this section, we will explain a modified form of the key exchange which was

explained in Chapter 3.

Algorithm 4.1.1 (Key Exchange protocol over Galois Field)

Public Parameters:

r, s ∈ Z+

α, β: Heisenberg Group element over GF (pn)

N(x) = P (x) ·Q(x) both P (x), Q(x) are irreducible polynomials over GF (pn)

Key Generation by user Y

i. User Y picks an arbitrary modulo prime based polynomial : f1(x)

ii. If f1(α) 6= 0 and f1(α) ∈ GF (pn) , then f1(α) is supposed to be secret key

iii. Public key formation XY = f1(α)r.β.(f1(α)−1)s mod N(x)

Key generation by user Z

i. User Z picks an arbitrary modulo prime based polynomial : g1(x)

ii. If g1(α) 6= 0 and g1(α) ∈ GF (pn) , then g1(α) is supposed to be secret key

iii. Public key formation XZ = g1(α)r.β.(g1(α)−1)s mod N(x)

Common session key generation by user Y

KY = f1(α)r.XZ .(f1(α)−1)s

Common session key generation by user Z

KZ = g1(α)r.XY .(g1(α)−1)s
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Correctness

User Y calculates

KY = f1(α)r.XZ .(f1(α)−1)s (4.1)

but XZ = g1(α)r.β.(g1(α)−1)s

therefore

KY = f1(α)r.g1(α)r.β.(g1(α)−1)s.(f1(α)−1)s (4.2)

since polynomial multiplication is commutative therefore

f1(α)g1(α) = g1(α)f1(α) and f1(α)−1.g1(α)−1 = g1(α)−1.f1(α)−1

let

f1(α)g1(α) = g1(α)f1(α) = P (4.3)

and

f1(α)−1.g1(α)−1 = g1(α)−1.f1(α)−1 = Q (4.4)

Equation (4.2) becomes

KY = P r.β.Qs (4.5)

On the other hand user B computes

KZ = g1(α)r.XY .(g1(α)−1)s (4.6)

but XY = f1(α)r.β.(f1(α)−1)s

therefore

KZ = g1(α)r.f1(α)r.β.(f1(α)−1)s.(g1(α)−1)s (4.7)

since polynomial multiplication is commutative therefore

f1(α)g1(α) = g1(α)f1(α), f1(α)−1.g1(α)−1 = g1(α)−1.f1(α)−1

let

f1(α)g1(α) = g1(α)f1(α) = P (4.8)
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and

f1(α)−1.g1(α)−1 = g1(α)−1.f1(α)−1 = Q (4.9)

Equation (4.7) becomes

KZ = P r.β.Qs (4.10)

From Equation (4.5) and (4.10)

KY = KZ

Example 4.1.1. (Key Exchange on Galois Field GF (52))

The Public parameters are

r, s ∈ Z+ such that

r = 3, s = 2

α, β: Heisenberg Group element over GF (52)

α =


1 2 3

0 1 x

0 0 1

, β =


1 2x+ 3 4

0 1 4x

0 0 1


N(x) = p(x) · q(x)

= 3x2 + 3

Generation of secret key by user Y:

User Y, picks an arbitrary polynomial f1(x) = x4 + 3x2 + x + 4. Compute the

polynomial on f1(α), and if f1(α) 6= 0 ∈ M(GF (52)) then computed value is

considered to be secret key of user Y:

f1(α) =


1 2 3

0 1 x

0 0 1


4

+ 3


1 2 3

0 1 x

0 0 1


2

+


1 2 3

0 1 x

0 0 1

 +


4 0 0

0 4 0

0 0 4


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=


1 3 2x+ 2

0 1 4x

0 0 1

 +


3 2 x+ 3

0 3 x

0 0 3

 +


1 2 3

0 1 x

0 0 1

 +


4 0 0

0 4 0

0 0 4



=


4 2 3x+ 3

0 4 x

0 0 4

 mod 3x2 + 3

and computing f1(a)−1 by using our implementation in ApCoCoA, we get

(f(α))−1 =


4 3 2

0 4 4x

0 0 4

 mod 3x2 + 3

The public key generation XY by user Y is given as:

XY = f1(α)3.β.(f1(α)−1)2

XY =


4 2 3x+ 3

0 4 x

0 0 4


3

.


1 2x+ 3 4

0 1 4x

0 0 1

.


4 3 2

0 4 4x

0 0 4


2

=


4 1 3x+ 4

0 4 3x

0 0 4

.


1 2x+ 3 4

0 1 4x

0 0 1

.


1 4 2x+ 1

0 1 2x

0 0 1



=


4 3x+ 4 x+ 3

0 4 2x

0 0 4

 mod 3x2 + 3

Generation of secret key by user Z:

User Z picks an arbitrary polynomial g(x) = 4x4 + 3x+ 2. Compute the

polynomial on g1(α), if g1(α) 6= 0 and g1(α) ∈ GF (52) then computed value will

be secret key for user Z:
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g1(α) = 4


1 2 3

0 1 x

0 0 1


4

+ 3


1 2 3

0 1 x

0 0 1

 +


2 0 0

0 2 0

0 0 2



=


4 2 3x+ 3

0 4 x

0 0 4

 +


3 1 4

0 3 3x

0 0 3

 +


2 0 0

0 2 0

0 0 2



g1(α) =


4 3 3x+ 2

0 4 4x

0 0 4

 mod 3x2 + 3

and

(g1(α))−1=


4 2 3

0 4 x

0 0 4

 mod 3x2 + 3

The public key generation XZ by user Z is given as:

XZ = g1(α)3.β.(g1(α)−1)2

XZ =


4 3 3x+ 2

0 4 4x

0 0 4


3

.


1 2x+ 3 4

0 1 4x

0 0 1

.


4 2 3

0 4 x

0 0 4


2

=


4 4 3x+ 1

0 4 2x

0 0 4

.


1 2x+ 3 4

0 1 4x

0 0 1

.


1 1 2x+ 4

0 1 3x

0 0 1



=


4 3x 4

0 4 0

0 0 4

 mod 3x2 + 3
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Lastly, common secret key computed by the user Y as KY is:

KY = f1(α)3.XZ .(f1(α)−1)2

KY =


4 2 3x+ 3

0 4 x

0 0 4


3

.


4 3x x+ 3

0 4 0

0 0 4

.


4 3 2

0 4 4x

0 0 4


2

=


4 1 3x+ 4

0 4 3x

0 0 4

.


4 3x 4

0 4 0

0 0 4

.


1 4 2x+ 1

0 1 2x

0 0 1



=


1 2x+ 3 2x+ 4

0 1 4x

0 0 1

 mod 3x2 + 3

and the common secret key computed by the user Z as KZ is:

KZ = g1(α)3.XY .(g1(α)−1)2

KZ =


4 3 3x+ 2

0 4 4x

0 0 4


3

.


4 3x+ 4 x+ 3

0 4 2x

0 0 4

.


4 2 3

0 4 x

0 0 4


2

=


4 1 3x+ 4

0 4 3x

0 0 4

.


4 3x 4

0 4 0

0 0 4

.


1 4 2x+ 1

0 1 2x

0 0 1



=


1 2x+ 3 2x+ 4

0 1 4x

0 0 1

 mod 3x2 + 3
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Example 4.1.2. (Key Exchange on GF (2n))

Public parameters are

r, s ∈ Z+

r = 3, s = 2

α, β: Heisenberg Group element over GF (28)

α =


1 y y + 1

0 1 y2

0 0 1

, β =


1 y2 + 1 y

0 1 y3

0 0 1



N(y) = P (y) ·Q(y)

N(y) = y4 + y3 + y + 1

User Y picks an arbitrary polynomial f(y) = y3 + y2 + 1. Compute the

polynomial f1(α), and if f1(α) 6= 0 ∈ M(GF (28)) then computed value will be

secret key for user Y:

f1(α) =


1 y y + 1

0 1 y2

0 0 1


3

+


1 y y + 1

0 1 y2

0 0 1


2

+


1 0 0

0 1 0

0 0 1



=


1 y y3 + y + 1

0 1 y2

0 0 1

 +


1 0 y3

0 1 0

0 0 1

 +


1 0 0

0 1 0

0 0 1



=


1 y y + 1

0 1 y2

0 0 1

 mod y4 + y3 + y + 1
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and computing (f1(α))−1 by using our implementation in ApCoCoa, we get

(f1(α))−1 =


1 y y3 + y + 1

0 1 y2

0 0 1

 mod y4 + y3 + y + 1

Now the public key generation XY by user Y is given as:

XY = f1(α)3.β.(f1(α)−1)2

XY =


1 y y + 1

0 1 y2

0 0 1


3

.


1 2y + 3 4

0 1 4y

0 0 1

.


1 y y3 + y + 1

0 1 y2

0 0 1


2

=


1 y y3

0 1 y2

0 0 1

.


1 y2 + 1 y

0 1 y3

0 0 1

.


1 0 y3

0 1 0

0 0 1



=


1 y2 + y + 1 y3 + 1

0 1 y3 + y2

0 0 1

 mod y4 + y3 + y + 1

At the other end user Z picks an arbitrary polynomial g1(y) = y5 + y2 + 1.

Compute the polynomial g1(α), if g1(α) 6= 0 ∈ GF (28) then computed value will

be secret key for user Z:

g1(α) =


1 y y + 1

0 1 y2

0 0 1


5

+


1 y y + 1

0 1 y2

0 0 1


2

+


1 0 0

0 1 0

0 0 1


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=


1 y y + 1

0 1 y2

0 0 1

 +


1 0 y3

0 1 0

0 0 1

 +


1 0 0

0 1 0

0 0 1



g1(α) =


1 y y3 + y + 1

0 1 y2

0 0 1

 mod y4 + y3 + y + 1

and

(g1(α))−1=


1 y y + 1

0 1 y2

0 0 1

 mod y4 + y3 + y + 1

The public key Generation XZ by user Z is given as

XZ = g1(α)3.β.(g1(α)−1)2

XZ =


1 y y3 + y + 1

0 1 x2

0 0 1


3

.


1 y2 + 1 y

0 1 y3

0 0 1

.


1 y y + 1

0 1 y2

0 0 1


2

=


1 y y + 1

0 1 y2

0 0 1

.


1 y2 + 1 y

0 1 y3

0 0 1

.


1 0 y3

0 1 0

0 0 1



=


1 y2 + y + 1 y

0 1 y3 + y2

0 0 1

 mod y4 + y3 + y + 1

Common session key KY computed by the user Y is given as:

KY = f1(α)3.XZ .(f1(α)−1)2
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KY =


1 y y + 1

0 1 y3

0 0 1


3

.


1 y2 + y + 1 y

0 1 y3 + y2

0 0 1

.


1 y y3 + y + 1

0 1 y2

0 0 1


2

=


1 y y3

0 1 y2

0 0 1

.


1 y2 + y + 1 y

0 1 y3 + y2

0 0 1

.


1 0 y3

0 1 0

0 0 1



=


1 y2 + 1 1

0 1 y3

0 0 1

 mod y4 + y3 + y + 1

Common session key KZ computed by the user Z is given as:

KZ = g1(α)3.XY .(g1(α)−1)2

KZ =


1 y y3 + y + 1

0 1 y2

0 0 1


3

.


1 y2 + y + 1 y3 + 1

0 1 y3 + y2

0 0 1

.


1 y y + 1

0 1 y2

0 0 1


2

=


1 y y + 1

0 1 y2

0 0 1

.


1 y2 + y + 1 y3 + 1

0 1 y3 + y2

0 0 1

.


1 0 y3

0 1 0

0 0 1



=


1 y2 + 1 1

0 1 y3

0 0 1

 mod y4 + y3 + y + 1

We heve suggest that for our proposed key exchange protocol one can use any

secure encryption/decryption algorithm.



Chapter 5

Security Analysis and Conclusion

In this chapter we will explain security analysis of the proposed key exchange

protocol, also we will discussed conclusion and future work.

5.1 Security Analysis of Key Exchange Protocol

Computational difficulty or complexity analysis with its associated strength as

security and accomplishment consideration is explained in this section.

5.1.1 Irreducible Factors of Polynomial N(x)

The working method offered is based on irreducible factorization of polynomial

N(x). Irreducible factors of N(x) are hidden in the offered algorithm, but because

of obvious clarity it is presented whenever required. The following points indicates

the powerful security analysis.

i. As N(x) = p(x) · q(x) is based on two irreducible polynomials and it is quite

difficult to find exact factors of N(x), if N(x) is the large degree polynomial.
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ii. The time required for irreducible polynomial factors increases exponentially,

so if the large degree polynomial is used in algorithm, it is improbable to get

its irreducible factorization.

5.1.2 Secret Keys:

A private key formation is based on arbitrary selected polynomials f1(x) or g1(x).

Polynomial which cannot be further reduced is called irreducible polynomial.

There are three different types of polynomials such as:

i. Usual polynomials

ii. Polynomials based on modulo prime

iii. Polynomials based on modulo prime defined on other polynomials which

have some power n, where n is integer.

In class (i) Arithmetic operations (+,- ×) are performed on polynomials using the

usual principal of algebra. Division is only workable, if coefficient are taken from

field elements.

Class (ii) has a similar number juggling activity as class (i), yet the division can

be utilized in remainder and quotient form. This exhibits that polynomial based

on modulo prime is useful in cryptography.

And in class (iii) the polynomials of Galois fields GF (pn) are used.

5.1.3 The Public Keys:

Public key of senders and receivers has its basis on the polynomial function f1(x)

or g1(x) to the power of r and polynomial functions (f1(x))−1 or (g1(x))−1 to

the power of s with multiplication in modulo a prime. Attacker try to recover

the private key from the public keys which are easily accessible. For the algo-

rithm symmetrical decomposition problem and the conjugacy search problem are
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used in public keys which are hard to find. From the offered scheme, factors of

N(x)(standard length of 160 bits) may be enough for preventing from the attacker

to get valuable ideas or valid private keys.

5.1.4 Brute-Force Attack:

The brute-force attack is to find all possible private keys. There is larger arbi-

trariness and uncertain behavior on smaller key length on our modified scheme.

It is a particular case of ECC, hence the attack is effective on a shorter length

keys. A shorter length keys have shorter process time, so the brute force attack

works on shorter length keys. Regarding the speed, efficiency and cryptanalysis

non-commutative approach is better as compared to ECC [5] and RSA [4] algo-

rithm.

5.2 Conclusion

In this thesis, we have applied a new platform on research paper “Non commu-

tative Cryptographic Scheme Using Extra Special group” [13]. Also we

have proved that the scheme is vulnerable for known plaintext attack. In order

to increase the security of the scheme, we have involved conjugacy search prob-

lem together with symmetrical decomposition problem. Also the security of key

exchange is improved by taking matrices from Galois field GF (pn). In fact, the at-

tacker has to solve exponential equations, that is X = f1(α)r ·β ·(f(α)−1)s and it is

hard to find f1(α) from the knowledge of public parameters. The Overall security

of the scheme is increased by using Galois Field GF (pn). We have given security

analysis of our scheme. One can extend our work by checking the possibility of

minus-plus algebra.
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